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ABSTRACT

The shape of the gradient line of the earth's zonal gravitational
potential is analyzed, and numerical results, such as the radii of
curvature, the directional field, etc., are derived from the zonal har-

monic coefficients of Kozai and King-Hele.
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ON THE GRADIENT LINE OF THE
EARTH'S ZONAL GRAVITATIONAL POTEN'I'IALl

Walter Kiihnle'in2

The gradient line of the earth's outer zonal gravitational potential

satisfies identically the differential equation

dx rad U
=y ]-E———= o 1
ds grad U] (1)

which has rotational symmetry in regard to the earth's revolution axis,
where U is the earth's outer zonal gravitational potential, s is the arc
length of the gradient line, increasing toward outer space, and X is the
position vector, referred to the mass center of the earth; orientation

of x', x, x3 is standard. To integrate (1), we transform X to a polar
coordinate system r,¢ in a random meridian plane or, for simplicity,
to the meridian plane through Greenwich. In this case, the differen-

tial equation can be written

lThis work was supported in part by Grant No. NsG 87 from the
National Aeronautics and Space Administration.

ZGeodesist, Smithsonian Astrophysical Observatory, Cambridge,
Massachusetts.



[ 3y LAY 1
or 9 dx
- cos ¢ rre
| grad U| rlgradUI
U U |
9 or . dx
- - sin ¢ e
r|grad U] |grad U|
or
dr do dx1
ds  Tas||cos¢ ds
1.3
d  arlf, ax®
ds ds||m® ds

(2)

(3)

By comparison of the elements in the left-hand matrices, the differ-

ential equation transforms:

dr ,__ 1 93U _
ds ' | grad U| 9r ’

dé 1 aU _

F—_——  — =
ds rzlgrad UI 9%

The arc length s only appears implicitly and hence

derives if we divide (4) by (5):

dr

1 8y /oy _
-r2 or [ 8¢

If we give the potential U in the form
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(5)

a simplified version

(6)




o0
u=SM) -Z (:‘r‘-)n I_P_(sing)p (7)
n=2

where GM is the gravitational constant X mass of the earth, a is the
equatorial radius, Jn are the zonal harmonic co’efficients, and Pn are
the Legendre's polynomials, the above equation (6) is a function only of r
and ¢, and can be integrated with the help of a special differential
equation (Hobson, 1955):

d%Pn(sin $) - == ¢(n+1) sin ¢ P (sin ¢) - P, | (sing)] = 0 (8)

expressing the derivatives of Pn as functions of Pn and P Equation

n+l’
(8) introduced in (6) and integrated leads to the gradient line in question:

n

[+ 0]
sin ¢+Z(~j—)n ntl I [in¢ P_(sin¢) - P_, (sing)] +C=0 , (9
n=2

wherein C is an integration constant, depending on a point Y ¢0,
through which the trajectory runs. The second term (infinite sum) in

(9) becomes zero for r > w0 and consequently

lim ¢ = ¢ = arc sin (-C), (10)

Ir—>00

which means that the gradient curve cannot exceed a certain geocentric
latitude. Obviously the geocentric radius r in the latitude ¢ is the asymp-

tote to the gradient line through Ty ¢q-




1. GRADIENT LINE AND ASYMPTOTE

In Table 1 we give the distance
D=rsin|$-¢| (11)

of a point r, ¢ on the gradient line from its asymptote ¢ for both the
Kozai (1964)3and King-He1e4 coefficients (see Appendix). The initial

points r were taken on a sphere with the radius Ty = 2, ¢0 varying

0’ ¢0
in tens of degrees from 90° to -90°. To obtain the King-Hele values,
one has only to add AD to the Kozai values D (Kozai) and corres-

pondingly A$ to ¢ in the case of the asymptote's geocentric latitude.

While D is zero at the poles, it starts increasing toward the
middle latitudes and decreases again with ¢ - 0. However, D is by no
means constantly zero at the equator but changes in a particular way

due to the uneven coefficients JZ This transitional stage near

¢ = 0 will be further discussed ix?thle last section. In the Northern
Hemisphere the gradient line approaches the asymptote from the south,
while the opposite is true for the Southern Hemisphere (see Figure 1).
Most of the change in D takes places within the first 10, 000-km eleva-

tion above ro = a and tends to zero with r = 0.

The difference between the D (Kozai) and D(King-Hele) is
hardly noticeable and significant only in lower elevations or near the

equator. We see, however, that the Southern Hemisphere shows in

3The Kozai coefficients afe taken from Kozai (1964). Throughout this
paper '""Kozai' refers to this paper.

4The King-Hele coefficients are taken from King-Hele a'nd Cook ‘(ll 9.65)
and King-Hele, Cook, and Scott (1965). Throughout this paper King -
Hele' refers to both these papers.
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both a stronger curved gradient line between the poles and ]¢ I ~30°

than the Northern Hemisphere. From |¢| ~ 20° on, this changes toward

the equator, where D becomes larger at the Northern Hemisphere com-

pared to D at the Southern Hemisphere. If we plot the distance D as a

function of the geocentric latitude ¢, we obtain a sinusoidal-like curve

with maxima at the middle latitudes and minima at the poles and near

the equator. The amplitude decreases hereby from ~ 5.1 km at the

earth's surface to 0. 3 km at 100, 000-km elevation and to 0 km at

H > .

A further insight into the straightness of a gradient line can be

obtained if we compare its length up to © with the corresponding pro-

jection on its asymptote. Starting from the arc length 512 between two

curve points Ql(r1,¢1), Qz(r2,¢2) of the gradient line

we obtain the projection on its asymptote

512=1'2C°S($'¢2)"1'1005(;-Cbl) ,

and the difference As for Ql onr, = a, and Q2 onr, > o

1 2 ’

As = lim (s
r,=a

1

r.,—>oo

2

12 = 312)

-7-
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Without going further into details, Figure 2 shows the values for As
as a function of 4. As expected, we get analogous results to D,
namely, zero values at the poles (where the gradient line is a straight
line) that increase to their maxima of ~0.7m in middle latitudes and
drop to very small values at or ncar the equator. Actually the main
contribution in As comes again from the section within 10, 000-km ele-
vation above the earth's surface, while for higher elevations 515 -Elz

tends quickly toward zero as can be ecasily seen from equation (12).

Cm]
AS
] | |
06— —
o4 —
02} —
| | ] |
90° T0° 50° 30° 10° 0°

LATITUDE 1¥i

Figure 2. Difference between the total length of the gradient line and
its projection on its asymptote.




2. DIRECTION FIELD AND CURVATURE

Equation (1) gives the direction of the tangent in each point of the
gradient line. Intersecting it with the corresponding geocentric radius

vector leads to the angle

VvV = arc sin—-———!——— I-@-[—I , (15)
r|grad Ul 9

which represents the directional field of the differential equation (1) in

a spherical coordinate system (Koéhnlein, 1966). In Table 2 the

v (Kozai) are directly given, while the v (King-Hele) follow again

by adding Av to v(Kozai). The different elevations H refer to the same
geocentric latitude, and hence the values v do not lie on the same gra-

dient line.

The pattern of the numerical results is unchanged from the pre-
vious ones: zeros at the poles, maxima in middle latitudes, and minima
around the equator. Figure 3 shows the points relative to the equator
¢ = 0, where the tangent is perpendicular to the revolution axis. For
Kozai's coefficients the curve moves at first slightly southward and
approaches afterward asymptotically the equator ¢ = 0, while for the
King-Hele coefficients the curve drops down asymptotically right from

the beginning.

-9-
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Figure 3. Curve locus: tangent.

The variation of the directional field leads to the curvature of the
gradient lines. Differentiating equation (1) with respect to s, one gets

the radius of curvature

s (16)

as shown in Table 3 for elevations up to 100, 000 km. Of particular
interest is the area around the equator. While the radius of the curva-

ture, computed from the King-Hele coefficients, increases steadily

-1~
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with higher elevations, the radius p (Kozai) increases at first,

then decreases at around 1, 000 km, then starts increasing again (p is

bigger at 1, 000 km than p at sea level, however smaller than p at

100 km elevation).

to the position of its inflection points (where p

This behavior of the gradient line near ¢ = 0 is due

4 and discussed below.

= o) as shown in Figure

[m] I 1 !
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Figure 4. Curve of inflection.




3. BEHAVIOR OF THE GRADIENT LINE AROUND THE EQUATOR

The uneven harmonic coefficients of the earth's gravitational field
cause a certain disturbance in the run of the gradient line near the
equator. While in the Northern and Southern Hemispheres the gradient
lines are bent away from the poles (at the poles they coincide with the
revolution axis x3) and approximate smoothly their asymptotes with
higher elevations, this behavior changes definitely during the transition
stage near ¢ = 0. Here the curves have points of inflection satisfying

the equation

x> Px! ax’

=0 (17)
ds®  ds? ax!

which is plotted in Figure 4 for both the harmonic coefficients. While
Kozai's Jn produce in general two points of inflection in the considered
area, the King-Hele harmonics lead to only one inflection point per

gradient line, however over a wider range.

In Figure 1 we show schematically the shape of the gradient lines
relative to their asymptotes. The arrows point out the directions from
which the asymptote is approached at infinity. Except at the poles we
have only one further point where a change in the approach takes place:
The equatorial point at infinity. This is due to the combined asympto-

tic approach of the gradient line and the curve of inflection,

-14-




The width of the transition stage around the equator amounts in
Kozai's and King-Hele's cases to ~15, 000 m and 30, 000 m, respectively,
along Ty = 2. As shown in Figure 1 the gradient line bends and oscil-
lates here relative to its asymptote before it assumes the monotone

approach typical outside of this transition zone.

Perhaps one point needs some additional explanation, namely
where the initial point Q1 (on Ty = a) falls together with its asymptote.

From the following expression we find its geocentric latitude .4_; = ¢o:

d Pn(sin $)

® I
Z(%) Co: : n d¢ =0
n=2

with g =2 satisfying equation (9) both at r = a and r =~ ©. For Kozai's

set of harmonic coefficients we get:

¢0 = ~2'29"7 (or -4631 m southward of the equator along r=a),

and analogously for King-Hele's set:

¢0 = -2'56!'8 (or -5469 m southward of the equator along r= a).
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APPENDIX
CONSTANTS AND COEFFICIENTS USED

6 378 165 m, earth's equatorial radius.
3.986 032 x 1020 cm3 sec-z, gravitational constant X mass of

the earth.

Harmonic Coefficients

KOZAI KING-HELE
J, 1082. 645 x 10~° 1082. 64 x 10~°
J, -2.546 x 107° -2.56 x 10°°
Ty -1.649 x 10'2 -1.52 x 10’2
Je -0.210 x 10:6 -0.15 x 10:6
e 0.646 x 10_6 0.57 X 10_6
I, -0.333 x 10.6 -0. 44 x 10_6
Jg -0.270 x 10_6 0. 44 x 10_6
Jg -0.053 x 10_6 0.12 x 10
Jio -0.054 x 10_6
I 0.302 x 10_6
I -0.357 x 10_6
I3 -0.114 x 10_6
J14 0.179 x 10
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NOTICE

This series of Special Reports was instituted under the supervision
of Dr. F. L. Whipple, Director of the Astrophysical Observatory of the
Smithsonian Institution, shortly after the launching ofthe first artificial
earth satellite on October 4, 1957, Contributions come from the Staff
of the Observatory.

First issuedtoensure theimmediate dissemination of data for satel-
lite tracking, the reports have continuedto provide a rapid distribution
of catalogs of satellite observations, orbital information, and prelimi-
nary results of data analyses prior to formal publication in the appro-
priate journals. The Reports are also used extensively for the rapid
publication of preliminary or special results in other fields of astro-
physics.

The Reports are regularly distributed to all institutions partici-
pating in the U. S. space research program and to individual scientists
who requestthem from the Publications Division, Distribution Section,
Smithsonian Astrophysical Observatory, Cambridge, Massachusetts
02138.




